Publications Since 2010

Google Scholar


  1. K. Li and G.A. Holzapfel [PDF]
    A multiscale viscoelastic fiber dispersion model for strain rate-dependent behavior of planar fibrous tissues
    Journal of the Mechanics and Physics of Solids, 180:105572, 2024.

  2. M. Dalbosco, D.C. Haspinger, K. Li, S.-I. Murtada, A. Pukaluk, M. Rolf-Pissarczyk, S. Sherifova, and G. Sommer [Link]
    Multiscale experimental characterization and computational modeling of the human aorta
    In: G. Sommer, K. Li, D.C. Haspinger, and R.W. Ogden (eds.), “Solid (Bio) mechanics: Challenges of the Next Decade”, Springer Publishing, 2022

  3. G. Sommer, K. Li, D.C. Haspinger, and R.W. Ogden [Link][Amazon]
    Solid (Bio) mechanics: Challenges of the Next Decade
    Springer Publishing, 2022

  4. M. Rolf-Pissarczyk, K. Li, D. Fleischmann, and G.A. Holzapfel [PDF]
    A discrete approach for modeling degraded elastic fibers in aortic dissection
    Computer Methods in Applied Mechanics and Engineering, 373:113511, 2021

  5. Y. Yang, K. Li, G. Sommer, K.-L. Yung, and G.A. Holzapfel [PDF]
    Mechanical characterization of porcine liver properties for computational simulation of indentation on cancerous tissue
    Mathematical Medicine and Biology, 37:469–490, 2020

  6. K. Li and G.A. Holzapfel [PDF]
    Multiscale modeling of fiber recruitment and damage with a discrete fiber dispersion method
    Journal of the Mechanics and Physics of Solids, 126:226-244, 2019

  7. E. Sirois, W. Mao, K. Li, J. Calderan, and W. Sun [Link]
    Simulated transcatheter aortic valve flow: implications of elliptical deployment and under-expansion at the aortic annulus
    Artificial Organs, 42: E141–E152, 2018

  8. K. Li, R.W. Ogden, and G.A. Holzapfel [PDF]
    A discrete fiber dispersion method for excluding fibers under compression in the modeling of fibrous tissues
    Journal of the Royal Society Interface, 15:0 20170766, 2018

  9. K. Li, R.W. Ogden, and G.A. Holzapfel [PDF]
    An exponential constitutive model excluding fibers under compression: application to extension-inflation of a residually stressed carotid artery
    Mathematics and Mechanics of Solids, 23: 1206–1224, 2018

  10. K. Li, R.W. Ogden, and G.A. Holzapfel [PDF]
    Modeling of fibrous biological tissues with a general invariant that excludes compressed fibers
    Journal of the Mechanics and Physics of Solids, 110: 38-53, 2018

  11. K. Li and W. Sun [PDF]
    Simulated transcatheter aortic valve deformation: a parametric study on the impact of leaflet geometry on valve peak stress
    International Journal for Numerical Methods in Biomedical Engineering, 33: e02814, 2017

  12. W. Mao, K. Li, and W. Sun [Link]
    Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics
    Cardiovascular Engineering and Technology, 7: 374–388, 2016

  13. K. Zuo, T. Pham, K. Li, C. Martin, Z. He, and W. Sun [Link]
    Characterization of biomechanical properties of aged human and ovine mitral valve chordae tendineae
    Journal of the Mechanical Behavior of Biomedical Materials, 62: 607–618, 2016

  14. K. Li, R.W. Ogden, and G.A. Holzapfel [PDF]
    Computational method for excluding fibers under compression in modeling soft fibrous solids
    European Journal of Mechanics–A/Solids, 57: 178-193, 2016

  15. K. Li, Q. Wang, T. Pham, and W. Sun [Link]
    Quantification of structural compliance of aged human and porcine aortic root tissues
    Journal of Biomedical Materials Research: Part A, 102: 2365–2374, 2014

  16. W. Sun, E. Sirois, K. Li, J. Calderan, and L. Ai [Link]
    Hemodynamic impact of transcatheter aortic valve deployment configuration
    Journal of Medical Devices, 7: 040922, 2013 (Frontiers Abstracts)

  17. W. Sun, K. Li, and E. Sirois [Link]
    Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment
    Journal of Biomechanics, 43: 3085-3090, 2010

  18. K. Li and W. Sun [Link]
    Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves
    Annals of Biomedical Engineering, 38: 2690-701, 2010